Togliatti Fly Team

Форум пилотов Тольятти, Самары и Самарской области
Текущее время: 18 мар 2019, 19:46

Часовой пояс: UTC+04:00




Начать новую тему  Ответить на тему  [ 273 сообщения ]  На страницу Пред. 124 25 26 27 28 След.
Автор Сообщение
 Заголовок сообщения: Re: Задачи на смекалку
СообщениеДобавлено: 13 янв 2019, 00:05 
Не в сети
Аватара пользователя

Зарегистрирован: 05 сен 2014, 23:56
Сообщения: 73
Да, ответ верный! Молодец, Саша!

PS Фотки плохо читаются. Попробую все же разобраться )


Вернуться к началу
 Заголовок сообщения: Re: Задачи на смекалку
СообщениеДобавлено: 13 янв 2019, 00:14 
Не в сети
Аватара пользователя

Зарегистрирован: 05 сен 2016, 22:05
Сообщения: 400
Параплан: skywalk tequila 2
Вам спасибо! я реально получил удовольствие.

_________________
Соколов Александр


Вернуться к началу
 Заголовок сообщения: Re: Задачи на смекалку
СообщениеДобавлено: 13 янв 2019, 00:33 
Не в сети
Аватара пользователя

Зарегистрирован: 05 сен 2014, 23:56
Сообщения: 73
ationis писал(а):
и еще интересный факт из этого уравнения следует что суммы противолежащих площадей равна площади половины квадрата

Очень хорошо, что ты это увидел! Молодец!
На самом деле, этот факт:
32 + 16 = 20 + x (и попутно = Sквадрата/2)
и есть ключ к решению. )

PS Выложу завтра короткий вариант.
PPS Дима Васильев присылал мне ссылку на видеоролик в сети с еше одним вариантом решения.


Последний раз редактировалось UraRad 13 янв 2019, 03:19, всего редактировалось 1 раз.

Вернуться к началу
 Заголовок сообщения: Re: Задачи на смекалку
СообщениеДобавлено: 13 янв 2019, 03:11 
Не в сети
Аватара пользователя

Зарегистрирован: 05 сен 2014, 23:56
Сообщения: 73
Постараюсь максимально сжато.
Изображение
Основное утверждение:
Суммарная площадь одной пары противолежащих четырехугольников равна суммарной площади второй такой же пары.
То есть, по первой картинке:
32 + 16 = 20 + ? ,
поэтому ? = 32 + 16 - 20 = 28
=
Доказательство основного утверждения.
По второй картинке:
Для треугольников:
желтые S1 + S3 = a*h1/2 + a*h3/2 = a*(h1 + h3)/2 = a^2/2 (Sмалого_квадрата/2)
синие S2 + S4 = a*(h2 + h4)/2 = a^2/2, (хотя и так понятно, это оставшаяся половина малого квадрата)
S1 + S3 = S2 + S4 желтая площадь = синей площади
Добавим внешние равные друг другу треугольники (белые), получим уже для четырехугольников:
S1 + S3 + 2*S = S2 + S4 + 2*S
Утверждение доказано.
=
Замечательно то, что это равенство справедливо независимо от положения точки O. Её можно возить по всему квадрату, все площади будут непрерывно меняться, но суммы противоположных будут неизменно сохраняться и оставаться равными друг другу.)


Вложения:
939959_original-1.jpg
939959_original-1.jpg [ 27.22 КБ | 211 просмотров ]


Последний раз редактировалось UraRad 13 янв 2019, 05:32, всего редактировалось 1 раз.
Вернуться к началу
 Заголовок сообщения: Re: Задачи на смекалку
СообщениеДобавлено: 13 янв 2019, 05:31 
Не в сети
Аватара пользователя

Зарегистрирован: 05 сен 2014, 23:56
Сообщения: 73
Этот пост для любителей.
Перечитал предыдущий пост.
UraRad писал(а):
Замечательно то, что это равенство справедливо независимо от положения точки O. Её можно возить по всему квадрату, все площади будут непрерывно меняться, но суммы противоположных будут неизменно сохраняться и оставаться равными друг другу.)
- это ведь готовая идея доказательства!
Можно провести его без всяких вычислений.

Итак, нам надо сначала увидеть(!), а потом доказать вот это:
Суммы площадей двух пар накрест лежащих фигур равны.
Из этого утверждения сразу следует решение: 32 + 16 - 20 = 28

Воспользуемся для доказательства вторым рисунком из предыдущего поста.
Легко показать, что при движении точки O параллельно одной из диагоналей большого квадрата оба четырехугольника в одной из пар (назовем её парой A) сохраняют каждый свою площадь.
(Например, при движении по линии h2-h4 сохраняются площади 1 и 3)
Но тогда сумма площадей второй пары B не может не сохраняться, потому что SA + SB = Sквадрата.
При движении параллельно второй диагонали, по тем же причинам также будут сохраняться суммы в обеих парах.
Но из любой точки в любую другую можно попасть комбинацией движений вдоль этих диагоналей.
Значит, суммы в обеих парах ,будут сохраняться при любом перемещении точки O.
Остается убедиться в их равенстве.
В центре квадрата эти суммы, очевидно, равны. Если начать двигаться из центра, измениться они, как мы увидели, не могут. Следовательно, они равны при любом положении точки O внутри квадрата.
Утверждение доказано.


Последний раз редактировалось UraRad 13 янв 2019, 17:11, всего редактировалось 12 раз.

Вернуться к началу
 Заголовок сообщения: Re: Задачи на смекалку
СообщениеДобавлено: 13 янв 2019, 11:52 
Не в сети
Аватара пользователя

Зарегистрирован: 05 сен 2016, 22:05
Сообщения: 400
Параплан: skywalk tequila 2
UraRad писал(а):

Надо доказать вот это:
Суммарная площадь одной пары противолежащих четырехугольников равна суммарной площади второй такой же пары.


Оно хорошо когда знаем что доказывать.
я до самого последнего момента не понимал что сума площадей не меняется .

_________________
Соколов Александр


Вернуться к началу
 Заголовок сообщения: Re: Задачи на смекалку
СообщениеДобавлено: 13 янв 2019, 11:54 
Не в сети
Аватара пользователя

Зарегистрирован: 03 мар 2011, 23:09
Сообщения: 1240
Теперь из начерталки что нибудь нужно будет решить... Немного отойти от обычной плоскости. :wink:

_________________
http://otoplenievdome63.ru


Вернуться к началу
 Заголовок сообщения: Re: Задачи на смекалку
СообщениеДобавлено: 13 янв 2019, 12:01 
Не в сети
Аватара пользователя

Зарегистрирован: 05 сен 2016, 22:05
Сообщения: 400
Параплан: skywalk tequila 2
Меня давно мучает вопрос.
Я весь интернет перерыл в поисках ответа так и не нашел.
Почему падает давление на оптикаемую поверхность с увеличением скорости.
После долгих рассуждений появилось предположение но доказать его я не могу.

_________________
Соколов Александр


Последний раз редактировалось ationis 13 янв 2019, 12:07, всего редактировалось 1 раз.

Вернуться к началу
 Заголовок сообщения: Re: Задачи на смекалку
СообщениеДобавлено: 13 янв 2019, 12:03 
Не в сети
Аватара пользователя

Зарегистрирован: 05 сен 2016, 22:05
Сообщения: 400
Параплан: skywalk tequila 2
Летатель писал(а):
Теперь из начерталки что нибудь нужно будет решить... Немного отойти от обычной плоскости. :wink:

предлагай

_________________
Соколов Александр


Вернуться к началу
 Заголовок сообщения: Re: Задачи на смекалку
СообщениеДобавлено: 13 янв 2019, 13:53 
Не в сети
Аватара пользователя

Зарегистрирован: 03 мар 2011, 23:09
Сообщения: 1240
:lol: Я даже не помню правил главных позиционных задач. Хотя конспект где-то лежит, в надежде перечитать и вспомнить... Может позже, если ритм жизни даст чуть больше свободного времени. :D . Но с удовольствием посмотрю на процесс на этой страничке. Думаю будет правильно всё воспроизвести на бумаге, а здесь выложить фото , скан и т.п.
У меня никогда не хватало терпения долго бить по клавиатуре.

_________________
http://otoplenievdome63.ru


Вернуться к началу
Показать сообщения за:  Поле сортировки  
Начать новую тему  Ответить на тему  [ 273 сообщения ]  На страницу Пред. 124 25 26 27 28 След.

Часовой пояс: UTC+04:00


Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей и 7 гостей


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Перейти: